234 research outputs found

    Population of ground and lowest excited states of Sulfur via the dissociative recombination of SH+ in the diffuse interstellar medium

    Full text link
    Our previous study on dissociative recombination of ground state SH+^+ into 2Π^2\Pi states of SH is extended by taking into account the contribution of 4Π^4\Pi states recently explored by quantum chemistry methods. Multichannel quantum defect theory is employed for the computation of cross sections and rate coefficients for dissociative recombination, but also for vibrational excitation. Furthermore, we produce the atomic yields resulting from recombination, quantifying the generation of sulfur atoms in their ground (\mbox{3^3P}) and lowest excited (\mbox{1^1D}) states respectively.Comment: 9 pages, 8 figures, 3 table

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments

    Methods for reduced cost and lower sample prep volumes for genetic analysis applications

    Get PDF
    As the cost of NGS has decreased, the library preparation cost has become a larger portion of the total expenditure. This is especially true for high-throughput applications, such as single-cell analysis. Therefore, there is a need to develop methods that can not only study the transcriptomes of single cells, but can also feasibly analyze large numbers of single cells. Miniaturizing the sample preparation volume provides the opportunity for significant cost savings. Using TTP Labtech’s mosquito liquid handlers, reagent and sample quantities can be scaled down to picogram values

    The flaring blazars of the first 1.5 years of the AGILE mission

    Full text link
    We report the AGILE gamma-ray observations and the results of the multiwavelength campaigns on seven flaring blazars detected by the mission: During two multiwavelength campaigns, we observed gamma-ray activity from two Flat Spectrum Radio Quasars of the Virgo region, e.g. 3C 279 and 3C 273 (the latter being the first extragalactic source simultaneously observed with the gamma-ray telescope and the hard X ray imager of the mission). Due to the large FOV of the AGILE/GRID instrument, we achieved an almost continuous coverage of the FSRQ 3C 454.3. The source showed flux above 10E-6 photons/cm2/s (E > 100 MeV) and showed day by day variability during all the AGILE observing periods. In the EGRET era, the source was found in high gamma-ray activity only once. An other blazar, PKS 1510-089 was frequently found in high gamma-ray activity. S5 0716+71, an intermediate BL Lac object, exhibited a very high gamma-ray activity and fast gamma-ray variability during a period of intense optical activity. We observed high gamma-ray activity from W Comae, a BL Lac object, and Mrk 421, an high energy peaked BL Lac object. For this source, a multiwavelength campaign from optical to TeV has been performed

    Detection of Gamma-ray Emission from the Eta-Carinae Region

    Get PDF
    We present the results of extensive observations by the gamma-ray AGILE satellite of the Galactic region hosting the Carina nebula and the remarkable colliding wind binary Eta Carinae (Eta Car) during the period 2007 July to 2009 January. We detect a gamma-ray source (1AGL J1043-5931) consistent with the position of Eta Car. If 1AGL J1043-5931 is associated with the Eta Car system our data provide the long sought first detection above 100 MeV of a colliding wind binary. The average gamma-ray flux above 100 MeV and integrated over the pre-periastron period 2007 July to 2008 October is F = (37 +/- 5) x 10-8 ph cm-2 s-1 corresponding to an average gamma-ray luminosity of L = 3.4 x 10^34 erg s-1 for a distance of 2.3 kpc. We also report a 2-day gamma-ray flaring episode of 1AGL J1043-5931 on 2008 Oct. 11-13 possibly related to a transient acceleration and radiation episode of the strongly variable shock in the system.Comment: 5 pages, 4 figure, accepted for publication in ApJ Letter

    AGILE detection of delayed gamma-ray emission from GRB 080514B

    Get PDF
    GRB 080514B is the first gamma ray burst (GRB), since the time of EGRET, for which individual photons of energy above several tens of MeV have been detected with a pair-conversion tracker telescope. This burst was discovered with the Italian AGILE gamma-ray satellite. The GRB was localized with a cooperation by AGILE and the interplanetary network (IPN). The gamma-ray imager (GRID) estimate of the position, obtained before the SuperAGILE-IPN localization, is found to be consistent with the burst position. The hard X-ray emission observed by SuperAGILE lasted about 7 s, while there is evidence that the emission above 30 MeV extends for a longer duration (at least ~13 s). Similar behavior was seen in the past from a few other GRBs observed with EGRET. However, the latter measurements were affected, during the brightest phases, by instrumental dead time effects, resulting in only lower limits to the burst intensity. Thanks to the small dead time of the AGILE/GRID we could assess that in the case of GRB 080514B the gamma-ray to X-ray flux ratio changes significantly between the prompt and extended emission phase.Comment: A&A letters, in pres

    Multiwavelength observations of 3C 454.3. I. The AGILE 2007 November campaign on the "Crazy Diamond"

    Get PDF
    [Abridged] We report on a multiwavelength observation of the blazar 3C 454.3 (which we dubbed "crazy diamond") carried out on November 2007 by means of the astrophysical satellites AGILE, INTEGRAL, Swift, the WEBT Consortium, and the optical-NIR telescope REM. 3C 454.3 is detected at a 19σ\sim 19-\sigma level during the 3-week observing period, with an average flux above 100 MeV of FE>100MeV=(170±13)×108F_{\rm E>100MeV} = (170 \pm 13) \times 10^{-8} \phcmsec. The gamma-ray spectrum can be fit with a single power-law with photon index ΓGRID=1.73±0.16\Gamma_{\rm GRID} = 1.73 \pm 0.16 between 100 MeV and 1 GeV. We detect significant day-by-day variability of the gamma-ray emission during our observations, and we can exclude that the fluxes are constant at the 99.6% (2.9σ\sim 2.9 \sigma) level. The source was detected typically around 40 degrees off-axis, and it was substantially off--axis in the field of view of the AGILE hard X-ray imager. However, a 5-day long ToO observation by INTEGRAL detected 3C 454.3 at an average flux of about F20200keV=1.49×103F_{\rm 20-200 keV} = 1.49 \times 10^{-3} \phcmsec with an average photon index of ΓIBIS=1.75±0.24\Gamma_{\rm IBIS} = 1.75 \pm 0.24 between 20--200 keV. Swift also detected 3C 454.3 with a flux in the 0.3--10 keV energy band in the range (1.231.40)×102(1.23-1.40) \times 10^{-2} \phcmsec{} and a photon index in the range ΓXRT=1.561.73\Gamma_{\rm XRT} = 1.56-1.73. In the optical band, both WEBT and REM show an extremely variable behavior in the RR band. A correlation analysis based on the entire data set is consistent with no time-lags between the gamma-ray and the optical flux variations. Our simultaneous multifrequency observations strongly indicate that the dominant emission mechanism between 30 MeV and 30 GeV is dominated by inverse Compton scattering of relativistic electrons in the jet on the external photons from the broad line region.Comment: Accepted for publication in ApJ. Abridged Abstract. 37 pages, 14 Figures, 3 Table

    AGILE observation of a gamma-ray flare from the blazar 3C 279

    Get PDF
    Context. We report the detection by the AGILE satellite of an intense gamma-ray flare from the gamma-ray source 3EG J1255-0549, associated to the Flat Spectrum Radio Quasar 3C 279, during the AGILE pointings towards the Virgo Region on 2007 July 9-13. Aims. The simultaneous optical, X-ray and gamma-ray covering allows us to study the spectral energy distribution (SED) and the theoretical models relative to the flaring episode of mid-July. Methods. AGILE observed the source during its Science Performance Verification Phase with its two co-aligned imagers: the Gamma- Ray Imaging Detector (GRID) and the hard X-ray imager (Super-AGILE) sensitive in the 30 MeV - 50 GeV and 18 - 60 keV respectively. During the AGILE observation the source was monitored simultaneously in optical band by the REM telescope and in the X-ray band by the Swift satellite through 4 ToO observations. Results. During 2007 July 9-13 July 2007, AGILE-GRID detected gamma-ray emission from 3C 279, with the source at ~2 deg from the center of the Field of View, with an average flux of (210+-38) 10^-8 ph cm^-2 s^-1 for energy above 100 MeV. No emission was detected by Super-AGILE, with a 3-sigma upper limit of 10 mCrab. During the observation lasted about 4 days no significative gamma-ray flux variation was observed. Conclusions. The Spectral Energy Distribution is modelled with a homogeneous one-zone Synchrotron Self Compton emission plus the contributions by external Compton scattering of direct disk radiation and, to a lesser extent, by external Compton scattering of photons from the Broad Line Region.Comment: Accepted for publication in Astronomy and Astrophysic
    corecore